

CTS CYLINDERS INSTRUCTION MANUAL

Use, Maintenance and Inspection

Composite cylinders – Technical Gases: Carbon Dioxide

Composite Technical Systems S.p.A.

Via Monsignor Faidutti, 9 33048 - Chiopris Viscone (UD) - Italy P.IVA 01155920323

Revision State

REV	PAGES AFFECTED	DESCRIPTION OF CHANGE	DATE
		GENERAL LAYOUT UPDATE	
02	ALL	RETEST AND INSPECTION MANUAL COMBINED WITH THIS MANUAL	February 2024
03 Pag 13-19		CYLINDER DAMAGE WITH GLASS FIBRE ADDED	October 2024
	Pag 9	CHANGE OF THE RETEST PERIOD TO 10 YEARS	
04	Pag 12	UPDATE CHAPTER 7.2	May 2025
	Pag 27	ADDITION OF INTERNAL DAMAGE, SECTION 7.4.2	
	Pag 3	TYPE LABEL UPDATE, CHAPTER 3.1	

Table of Contents

1.	IDENTIFICATION DATA	. 1
	1.1 INFORMATION ON THE MANUFACTURER	. 1
	1.2 COPYRIGHT	. 1
2.	GENERAL INFORMATION	. 1
	2.1 EMPLOYER'S LIABILITY	. 1
3.	TECHNICAL SPECIFICATIONS	. 2
	3.1 MARKING AND LABELLING OF THE CYLINDERS	. 3
	3.2 APPROVED GAS	. 3
4.	USE OF THE CYLINDER	. 4
	4.1 NOTES ON HOW TO USE THE CYLINDER	. 4
	4.2 FILLING	. 5
	4.3 WITHDRAWAL	. 5
	4.3.1 WITH FLOAT	. 5
	4.3.2 WITHOUT FLOAT	. 6
5.	HANDLING	. 6
6.	MAINTENANCE	. 6
	6.1 VALVE INSTALLATION/REMOVAL	. 7
	6.1.1 VALVE REMOVAL:	. 8
	6.1.2 VALVE INSTALLATION:	. 8
	6.2 DRYING AND CLEANING	. 8
7.	INSPECTION AND PERIODIC RETEST	. 9
7.:	L HYDRAULIC TEST	10
	7.2 LEAK TEST	12
	7.3 O-RING REPLACEMENT	12
	7.4 DAMAGE EVALUATION	12
	7.4.1 EXTERNAL DAMAGE EVALUATION	13
	Damages to the finishings	13
	Level 1	14
	Level 2	15
	Level 3	17
	Damages to the composite material	18
	Level 1	18
	Level 2	19
_	M0014 – Carbon Dioxide - ENG Rev 04 – 13/	05/2025

	Level 3	20
	Chemical exposure or attack	21
	High-temperature exposure	22
	Damages to thread/nozzle	23
	Level 1	23
	Level 2	24
	Level 3	24
	7.4.2 INTERNAL DAMAGE EVALUATION	25
	Level 1	25
	Macro Blistering	25
	Micro Blistering	26
	Blemishes	27
	Level 2	28
	Contamination	29
	Level 3	30
7	.5 RMA PROCEDURE	31
8.	STORAGE	31
9.	SHIPMENTS	31
10.	SCRAPPING AND DISPOSAL	32
11.	USE AND MAINTENANCE SUMMARY	33

1. IDENTIFICATION DATA 1.1 INFORMATION ON THE MANUFACTURER

Composite Technical Systems S.p.A. Via Monsignor Faidutti, 9 33048 - Chiopris Viscone (UD) - Italy VAT 01155920323

Tel. +39 0432 991383 Fax. +39 0432 991323 E-mail: info@ctscyl.com Web: www.ctscyl.com

1.2 COPYRIGHT

© All rights reserved. This document and any attachment are confidential to the addressee and may contain confidential information or information protected by law. No part of this publication may be reproduced, copied or duplicated in any form or by any means, without the explicit written permission of Composite Technical Systems S.p.A.

2. GENERAL INFORMATION

The current user and maintenance manual can be downloaded for free on the website www.ctscyl.com.

This manual is intended to provide to the customer, and in particular to the staff working in directly with the cylinder, all the information necessary for the proper use of it, as well as instructions for the maintenance in operational conditions, ensuring that is carried out in full respect of all safety conditions.

The instructions in this manual are a supplement to (not a replacement) of the health and safety standards in force.

Composite Technical Systems S.p.A. declines any responsibility in case of:

- use of the product in a way different from the provisions of the current legislation about health and safety;
- disregard or incorrect application of the instructions included in the manual;
- non-conforming uses;
- unauthorized changes or changes not carried out by technicians of Composite Technical Systems S.p.A.

Composite cylinders at high pressure, with non-structural plastic (PET) *liner*, wrapped with carbon fibre, are designed for durability in harsh conditions of use. However, like any other type of container that contains gas under pressure, even type 4 composite cylinders must be handled with care and properly maintained. In particular, they should not be, under any circumstances, rolled, dragged on the ground, thrown to the ground or hit with objects of any type.

2.1 EMPLOYER'S LIABILITY

The employer is directly responsible for providing this manual to all staff working in direct contact with the cylinder. The employer must keep the manual up to date adding any further instructions and/or information that the manufacturer may issue.

In case of loss or destruction of this copy of the manual, the employer must contact the manufacturer as soon as possible, requesting a new complete copy.

3. TECHNICAL SPECIFICATIONS

CTS's composite cylinders for technical gases are designed and conceived to keep high-pressure technical gases. Their light, manageable and durable features make them innovative cylinders. All CTS S.p.A. cylinders are marked π according to the TPED directive (2010/35/EU), and have passed the tests specified in EN12245 and/or ISO 11119-3.

CTS's composite cylinder are made with a non-structural PET liner, wrapped with a composite material made of carbon fibres and epoxy resin, which confers the structural and mechanical properties. The plastic liner has the only function to contain the gas. The cylinder comes with rubber protective caps (upper and bottom) which have the purpose of cushioning the impacts. It can also come with protective sleeves, which are intended to protect the composite surface and the label and also work as a flame retardant.

For the replacement of the sleeves, label and caps, ALWAYS ask for personnel authorised by CTS S.p.A.

- 1- Inner nozzle
- 2- PET inter liner
- 3- Composite shell
- 4- Upper cap
- 5- Label
- 6- Optional protective finishings
- 7- Bottom cap

Figure 1. CTS cylinder composition diagram

3.1 MARKING AND LABELLING OF THE CYLINDERS

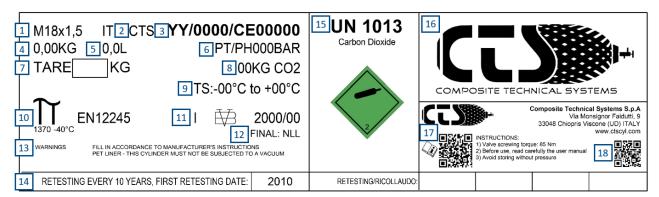


Figure 2. Label

Markings on labels are as example only.

- 1 Cylinder thread; 2 Manufacturer's identification; 3 Serial No.; 5 Empty weight*; 5 Water capacity; 6 Test pressure (PH); 7 Tare**; 8 Maximum weight of CO₂ at ambient temperature; 9 Max/min Temperature; 10 International mark and Standard; 11 Country of approval, Inspection stamp and initial test date; 12 Non-Limited Life, no expiration date; 13 Warnings; 14 First re-test (see section 7); 15 Approved gas; 16 Customizable logo area; 17 QR code for manual; 18 Instructions and additional information.
- *If the cylinder is approved in accordance with the EN 12245 standard (point 10 on the label), the weight will correspond to the average weight of the bare cylinders in the batch, without finishes.

If the cylinder is approved in accordance with the ISO 11119 -3 standard (point 10 on the label), the weight will correspond to the average weight of the cylinders in the batch, in their final configuration (finishes and valve, if applicable).

**Tare: Cylinder dry weight, weight of the valve (and float, if present) and of any other component attached to the cylinder ready for filling. Therefore, the weight of the cylinder in the user's configuration.

If the cylinder was purchased together with the valve, CTS will fill in this space with the final weight, otherwise it will be the customer's responsibility to note the tare for the cylinder in this space.

Both the main label (affixed to the composite material) and the secondary label (visible) specify all the data prescribed by the regulations in force.

Carefully follow the relevant indications as specified on the label.

3.2 APPROVED GAS

CTS cylinders for carbon dioxide must only be filled with the gas indicated on the label and following the instructions in the manual.

Do not mix with other gases, and do not partially fill with gas and/or mixtures of unspecified gases. This practice poses a significant risk of explosion, which could result in serious injury or death.

4. USE OF THE CYLINDER

CTS cylinders are designed to be used in the same way as other pressurized gas cylinders, with all the appropriate precautions.

However, there are some major differences, discussed in the following paragraphs

4.1 NOTES ON HOW TO USE THE CYLINDER

We recommend to:

- Keep the threads and the cylinder interior dry, without grease, dirt or other contaminants.
- When installing the valve follow the installation procedures and the recommendations provided by the valve manufacturer.
- When the cylinder is to be stored for long periods of time without the intention of using it, always maintain a minimum inert gas pressure inside the cylinder.
- Use the CO₂ cylinder in a well-ventilated area to avoid gas accumulation

It is forbidden:

- Filling the cylinder with a pressure higher than 110% of the working pressure (PW)
- Using the cylinder with a pressure higher than the operating pressure (PW)
- Exposing the cylinder to vacuum
- Do not fully or partially fill with gases other than those listed on the label
- Filling a cylinder with an expired re-testing date (see paragraph 7)
- Screwing a valve with a tightening torque outside the recommended values
- Tampering with the surface protections (end caps, protective sheathings, painting, changing the labels identifying the manufacturer), unless authorised by CTS S.p.A.
- Artificially heating the cylinder, especially to temperatures exceeding 65 °C

We discourage the following behaviours:

- Filling the cylinder if it presents a leak
- Filling a cylinder showing defects
- Fully discharging a cylinder, unless when planning to remove the valve (see paragraph 6.1.1)
- Using a cylinder that has been exposed to a highly corrosive atmosphere or environment, without
- subjecting it to strict checks of inspection and testing
- Using a cylinder showing signs of shocks, hits, abrasions or falls of considerable entity
- Storing the cylinder without any internal pressure
- Discharge regularly the cylinder at speed exceeding 260 L/min (see paragraph 4.3)

In the above-mentioned cases we recommend that you have the cylinder examined by personnel authorised by CTS S.p.A.

4.2 FILLING

The cylinder must only be filled by a qualified person and only using the approved gas.

DEFINITIONS

- Cylinder dry weight: Weight of the cylinder, empty, with finishes (caps and casing). This weight does not include the weight of the valve.
- Tare: Cylinder dry weight, weight of the valve (and float, if present) and of any other component attached to the cylinder, ready for filling.

•

GENERAL WARNINGS

Before filling a CO₂ cylinder, make sure it contains no water or other substances. The presence of water can create carbonic acid; this can corrode the metal components connected to the cylinder.

To avoid the presence of moisture inside the cylinder, apply the following cautionary measures:

- Do not empty cylinders completely while maintaining residual pressure inside;
- · Always reseal cylinders after emptying

It is strictly prohibited for the weight of the CO_2 inside the cylinder to exceed 75% of the capacity of the cylinder itself. For example, if the cylinder volume with water is 9 litres, it is forbidden to fill the cylinder with more than 6.75 kg CO_2 ! If the cylinder is used in a high-temperature environment (temperatures constantly above 35°C), the permissible filling percentage is 66%. For example, if the cylinder volume with water is 9 litres, it is forbidden to fill the cylinder with more than 5.94 kg CO_2 !

Procedure:

- Tighten the valve, following the instructions in section 6.1 of this manual.
- It is advisable to fill the cylinder at a rate that will allow the CO₂ to always remain at ambient temperature. High filling rates can generate a thermal shock that could lower the cylinder temperature to around -35°C. Sudden thermal shock could damage the inner lining which is in plastic and, as a result cause leaks that would make the cylinder unusable.
- While filling CO₂ cylinders, it is important to monitor the weight too, and therefore, the cylinder needs to be weighed initially when empty (tare weight). Then, fill the cylinder, using a system that allows the operator to check the weight constantly while filling. Interrupt the filling process when the quantity of CO₂ reaches the value specified in the previous points.
- If the cylinder is filled with an amount of CO₂ exceeding the permitted maximum, it must be discharged immediately until it reaches the permitted weight.

4.3 WITHDRAWAL

For better cylinder duration, CTS recommends, where possible, to maintain a discharge speed of 260 litres per minute, which guarantees the integrity of the liner inside. However, it is possible to discharge the cylinder at higher speeds when necessary.

4.3.1 WITH FLOAT

CO2 cylinders with dip tube have a hose, connected to the valve, going down to the bottom of the cylinder. It is important to remember that these cylinders must not be fitted with pressure regulator. The inclusion of a pressure reducer can cause a sudden drop in pressure downstream of the pressure reducer, turning liquid CO₂ into 'carbonic snow' and obstructing the passage. It is important that the pick-up tube has a length suitable for the size of the cylinder in use.

To withdraw the liquid CO2 from these cylinders, it is essential to keep them upright. This ensures that the end of the dip tube remains below the level of the liquid, otherwise it is not possible to withdraw the majority of the liquid contents of the cylinder.

The liquid CO2 is withdrawn from the cylinder with float at the same pressure as it is inside the cylinder itself. Therefore, it is advisable for equipment used after this withdrawal to be designed to manage these pressures or to have been equipped with suitable safety measures.

All pipeline segments containing liquid CO_2 between two valves must be equipped with safety valves to discharge the product. This precaution is essential because if liquid CO_2 becomes trapped, evaporation could generate overpressure with the consequent risk of explosion.

4.3.2 WITHOUT FLOAT

In the case of cylinders without float, the CO2 is withdrawn directly from the head of the cylinder and released in the form of gas. When the cylinder valve opens, the pressure inside decreases, forcing the liquid CO2 to constantly evaporate to re-establish pressure equilibrium.

As a rule, CO2 cylinders without float are fitted with pressure regulator to lower the inside pressure to a level suitable for end use. These cylinders must be positioned vertically since, if they are in a horizontal position, the liquid CO2 could come into contact with the sampling device, causing the passage to be blocked due to the formation of 'carbonic snow'.

The withdrawal rate from the cylinders without float is limited to the evaporation speed of the liquid CO2, which evaporates as it absorbs the heat from the surrounding atmosphere. There is a risk that the cylinder and specifically, the valve can freeze, compromising the operation of the valve itself. To prevent this problem, it is recommended to use more than one cylinder at the same time, in parallel, or to heat the cylinder (without exceeding 65°C) by immersing it in warm water. Under no circumstances can the cylinder be heated by direct flame.

5. HANDLING

Every type of cylinder must not under any circumstances be dragged, dropped, manipulated, left without custody, or roughly handled. When transporting cylinders, ensure that they are properly secured and cannot roll, swing or fall. The cylinders must be handled only with equipment that will not cause any damage to them.

6. MAINTENANCE

After using a cylinder, inspect its condition, and then proceed with cleaning the cylinder and its components. For cleaning procedures, refer to section 6.2. If water is used for cleaning, ensure that all components are thoroughly dried before reassembling the cylinder.

6.1 VALVE INSTALLATION/REMOVAL

The valve installation/removal must be carried out by qualified personnel or authorized service centres, following the relevant instructions provided by this manual and any instructions provided by the valve manufacturer.

WARNING:

BEFORE removing the valve MAKE SURE THE CYLINDER IS COMPLETELY EMPTY.

Anyone handling a cylinder with a valve, which they believe to be empty, must take the same precautions as they would if the cylinder were considered pressurized/full.

Pay attention during the removal of the valve. If the valve is difficult to remove, stop immediately. It is possible that the valve is damaged or not functioning properly. CTS is not responsible for malfunctions or incorrect use of valves on CTS cylinders. In case of suspected valve malfunction, contact the manufacturer immediately.

- PLACING THE CYLINDER: place and fix the cylinder in a horizontal or vertical position. If using jaws or forks, cover the forks with a rubbery material in order to prevent any damage to the surface of the cylinder. The force exercised on the cylinder must not compromise the mechanical characteristics of the composite; the maximum force applied to the jaws must not exceed 6 Kg/cm²
 - **NOTE**: If the cylinder is clamped in a clamp equipped with jaws, do not place the jaws on the label but on area of the cylindrical wall where there are no labels and/or stickers.
- USE A COUNTER WRENCH: For the valve removal, place a wrench complying with the indications provided in Table 1 on the (milled) notches of the nozzle as shown in Figure 3. The threads on the CTS cylinders are all right-handed so to unscrew the valve you will need to turn counter clockwise.
- USE A TORQUE WRENCH: For the valve installation, use a torque wrench calibrated to the values provided by the standard ISO 13341 (CTS S.p.A. recommends, as stated by the directive ISO 13341 regarding cylinders made out of composite materials with a plastic liner, 85Nm). The threads on the CTS cylinders are all right-handed so to screw the valve you will need to turn clockwise.

Tab 1. Counter wrench size

Cylinder Model	Wrench [mm]	
All models	46	

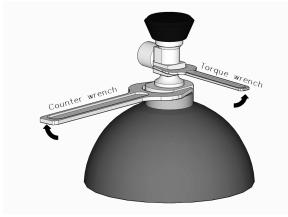


Figure 3. Use of the counter wrench to disassemble the valve.

6.1.1 VALVE REMOVAL:

- The pressurized gas must be removed from the cylinder.
 The cylinder should be emptied using the valve fitted with a recommended emptying speed of 260 litre per minute and following any recommendations provided by the valve manufacturer.
- 2. Once the cylinder is empty, remove the valve, following the instructions above, locking the cylinder as to prevent any damage to the nozzle thread and the valve.
- 3. To check the valve operation, add a small amount of air into the cylinder, to verify that the valve is not stuck, then release pressure again. If this operation is successfully completed, the valve works as intended. Fully release pressure, then try to remove the troubling or possibly malfunctioning valve. For each request or in case of problems with the valve, contact the valve manufacturer.

If, for any reason, it is difficult to remove the valve, do not persist. In case of alleged defects of the valve, avoid disassembling it. Refer to the manufacturer and/or dealers authorized by the manufacturer.

If any defect resulting in the non-acceptance of the cylinder is detected during the inspection, do not proceed further with the check and contact CTS S.p.A. or an authorised centre.

6.1.2 VALVE INSTALLATION:

- 1. Verify that the valve designed service pressure is compatible with the cylinder designed service pressure before the valve is inserted into the cylinder. The valve's thread and the boss' thread should be carefully inspected and repaired as necessary, in accordance with the valve manufacturers or cylinder manufacturer's recommendations, to ensure satisfactory performance in-service.
- 2. Insert the valve into the cylinder neck and tighten first by hand, then finish tightening the valve with a torque wrench calibrated to the above-mentioned value.
 Do not install any valve that has not passed inspection. The valve threads should be free from damage and also checked for compliance to the thread specification by using the appropriate gauges. The surface of contact with the valve must be smooth and in good condition. Damaged or distorted valve threads can damage the cylinder's boss threads. Damage to the contact surface can prevent sealing and damage the cylinder's boss.

Use valves that allow tightening torques corresponding or higher than those indicated by the manufacturer of the cylinder.

6.2 DRYING AND CLEANING

The following cleaning procedures are recommended for external cleaning of polyester liner composite cylinders:

- Dirt: Wash with a water solution containing a non-aggressive detergent, thoroughly rinse with clean water.
- Oli and grease: Degrease with soap and water. Do not use substances listed in chapter "Chemical exposure or attack" and do not expose to temperatures above 65°C.
- Moisture: wipe with a soft cloth.
- Boss Corrosion: contact Customer Service. The inner collar of the boss can be removed to reach the areas exposed to corrosion. Ensure that this operation is carried out only by qualified personnel who will also be responsible for replacing the O-ring seal.
 - After each removal of the nozzle, it is advisable to replace the O-RING.
- To dry the cylinder turn it upside down and wait for the water to flow out of it. Do not expose it to heat sources to speed up the drying time. It is possible to use a clean air jet (max temperature 65°C).
 - Dry each component well before refilling with CO₂

The following cleaning procedures are recommended for internal cleaning of polyester liner composite cylinders:

- Light soil: Remove any existing solid contaminants from the interior of the cylinder by rinsing. Follow
 the above-mentioned drying procedure. The interior of the cylinder must be cleaned and dried before
 reinstalling the valve.
- Odour: Rinse with a solution of baking soda, then rinse with a highly diluted solution of vinegar, then follow the above-mentioned drying procedure.
- Oil and grease: Clean gently with mild soap and water. If it is not enough, contact CTS S.p.A. for assistance.
 Avoid the use of organic solvents or acid/caustic substances that might corrode the inner liner made out of polyester.
- Follow the drying procedure mentioned above. The inside of the cylinder must be cleaned and dried before reinstalling the valve.

Dry each component well before refilling with CO₂

- Under no circumstances shall the cylinder interior be cleaned by rolling inside chips, balls or other solid materials mixed with water.
- For any problems other than the above, please contact CTS S.p.A. for assistance.

7. INSPECTION AND PERIODIC RETEST

This manual broadly follows the requirements specified in the ISO 11623.

The first and foremost aim of periodic inspection and testing is to reintroduce a cylinder into service for an extended period of time.

According to ISO 11623 for type IV cylinders, which are not SCBA or SCUBA, the retest period must not exceed five years, or ten for cylinders of known and safe design that have obtained this approval. CTS has obtained the extension of the retest period to ten years (according to packaging instruction P200 (9) of the ADR), so from 10/03/2023 the retest period is extended to ten years from the last test performed.

Some countries, according to their national laws or regulations, may stipulate a shorter retest period. According to ISO 11623, responsibility of owner or user is to submit the cylinders for a periodic inspection within the specified interval.

The inspection consists in internal and external examination for damage and degradation and hydrostatic pressure test to design test pressure. If the results are positive the cylinder can return to service, otherwise be rejected and rendered unserviceable (see paragraph 10).

Note that during the external examination the finishes and the caps must not be tampered, in fact they are integral part of the cylinder design. The rubber caps have the purpose of cushioning the impacts, while the sleeves are intended to protect the composite surface and the label and work as a flame retardant.

If the finishes or the caps are damaged, it is possible that the composite surface have been damaged too, in this case we suggest to let an authorized centre or CTS S.p.A. itself carry out a survey on the damages.

With this manual it is not possible to report every possible cause of damage. Any questions regarding out of the ordinary damages shall be directed to CTS at info@ctsccyl.com

7.1 HYDRAULIC TEST

Each cylinder must be subjected to a proof testing using a suitable fluid – water is commonly used as a test medium. In any case, the test medium shall not reduce the integrity of the cylinder.

The test pressure is marked on the cylinder label. Adequate safety precautions shall be taken during the test. For Type 4 cylinders the test method is the hydraulic test, this test should be conducted following the guidelines outlined in Test 4 of EN 12245:

Test 4 - Pressure test of finished cylinders at ambient temperature

Procedure

Where cylinders are subjected to autofrettage, the pressure test may immediately follow or be part of the autofrettage operation.

When carrying out the pressure test, a suitable fluid (e.g. normally water) shall be used as the test medium.

The fluid pressure in the cylinder shall be increased at a controlled rate until the test pressure (p_h) is reached. The cylinder shall remain at the test pressure (p_h) for at least 30 s.

The limit deviation on attaining test pressure shall be + 3 % - 0 % of test pressure (p_b) .

Alternatively a pneumatic pressure test can be used provided that appropriate measures are taken to ensure safe operation and to contain any energy that can be released, which is considerably more than in the hydraulic test.

Criteria

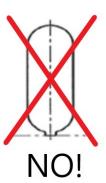
- a) Pressure shall remain steady;
- b) there shall be no leaks;
- c) after the test, the cylinder shall show no visible permanent deformation.

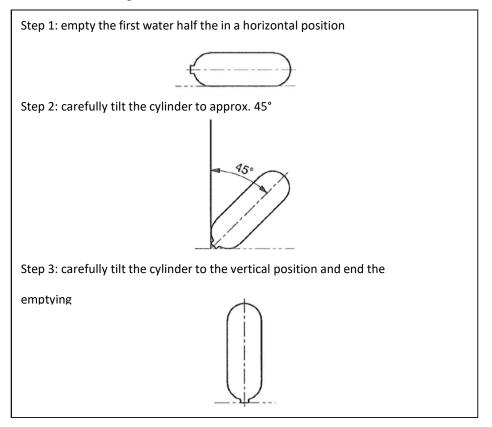
Parameters to monitor during the test

Pressure.

NOTE: The hydraulic test described is also valid for Type 4 cylinders approved according to ISO 11119-3 standard.

Type 4 cylinders are not subject to autofrettage.




With regards to Type 4 cylinders pressure test, it is important to know that:

 Type 4 cylinders must not be subjected to vacuum; therefore, it is imperative to not create vacuum during the filling procedure and, above all, during the emptying procedure.

For this reason, do **NOT** empty the cylinder in a vertical position.

Instead, the following method must be USED:

• Type 4-cylinder hydraulic test does not include water jacket test or any other kind of test that records the water capacity increasing. Checking the water capacity increasing during the hydraulic test is not useful and sometimes even misleading, given the high mechanical elasticity of Type 4 cylinders.

7.2 LEAK TEST

The ISO 11623 standard recommends the following procedure to test the cylinder for leak tightness:

- 1. Pressurize the cylinder to its operating pressure.
- 2. Allow the cylinder and the O-RING to stabilize at room temperature for 3 hours (settling period). Immerse the cylinder in water for at least 10 minutes to check for the presence of leaks. The release of air bubbles from the end caps, the connection area between fibres, or from the composite material, even after the settling period, is not considered a leak. These bubbles are trapped air between the different layers that make up the cylinder and are pushed out during filling. The standard states that air leakage of more than 1 bubble/min (i.e. 6ml/h) constitutes a leak.

The settling period serves the following purposes:

- Allowing the cylinder to reach room temperature.
- Ensuring the proper settling of the sealing O-RING.
- Allowing trapped air between the various layers that make up the cylinder's coating (sheaths and end caps) to escape.

If the cylinder is not allowed the settling period after filling, the described phenomena may simulate leaks. It should be emphasized that these are not actual leaks.

7.3 O-RING REPLACEMENT

If during the leak test a leak is found between the internal and the external nozzle, this leak is due to a damaged internal O-Ring.

It is possible to replace the internal O-Ring in CTS S.p.A. Type 4 cylinders thanks to the CTS patented nozzle. The operative instruction manual and all the spare parts can be requested via email at info@ctscyl.com

7.4 DAMAGE EVALUATION

Damages that could arise on the cylinder during its lifetime while using a composite cylinder, can be classified, according to ISO 11623, as follows:

Level 1: minor entity damages that can happen during normal exercise, they do not require compulsory repair.

Level 2: damages more severe than level 1, requiring additional inspections or repair. Following manufacturer's inspection, they may be deemed damages of level 1 or level 3. Please ask for assistance at your authorized dealer or at info@ctscyl.com for authorization and recommendations cited above.

Level 3: severe damages, to an extent where the cylinder repair is not viable. The cylinder must be discarded and made unusable.

7.4.1 EXTERNAL DAMAGE EVALUATION

To perform an effective external inspection the cylinder should be clean. The cleaning should be gentle, do not use harsh soaps, chemical agents or solvents. Let the cylinder dry naturally.

Once the cylinder is clean, proceed with the evaluation following the criteria described below.

Damages that could arise on the cylinder during its lifetime while using a composite cylinder, can be classified in three categories:

- Damages to the finishing
- Damages to the composite material
- Damages to the threads

Not all damages declare the cylinder's end of life. This brief guide analyses the most common ones. In case of any doubt, please seek assistance at your authorized dealer or directly at info@ctscyl.com

Damages to the finishings

The finishing includes the caps (top and bottom), the exterior sleeves, the stickers and the fibreglass and paint layer.

The finishing materials are not a structural part of the cylinder, for this reason even if damaged they don't compromise the cylinder functionality and safety. If they have been damaged, please ensure that the composite material underneath has not been damaged as well.

In case of any damages, such as tears or cuts, all components, including the glass fibre layer, can be replaced or repaired in a simple procedure by an authorised dealer. Please seek assistance at your authorized dealer or directly at info@ctscyl.com.

Damages to the label, especially to the serial number or other identification markings, require the action from an authorized dealer or CTS S.p.A. to wholly substitute the label, thus maintain its traceability.

Level 1

Damages that do not involve the composite surface (level 1) do not affect the cylinder's safety. In case these damages are such that their protective function is compromised, they should be replaced.

Some examples of level 1 damages on finishings:

During the normal life cycle of the cylinder, cracks can form on the protective layer of glass fibre composite. This defect does not affect the safety or life of the cylinder, but is an aesthetic defect caused by the resin. Example of surface cracks:

Surface Cracks

Level 2

In level 2 damages, the colored polyolefin sleeve is torn. The user must ensure that no damages have been transmitted to the reinforcement composite material below. If the composite material is involved in the damage, then the cylinder must undergo the Level 2 of *Damages to the composite material*, otherwise it can be treated as a Level 1 of *Damages to the finishing*. In case of any doubt or to request any assistance, always contact the authorized dealer.

Some examples of level 2 damages on finishings:

In the case of level 2 damage for cylinders with a protective glass fibre finish, the damage is such that the paint layer has been completely removed and the glass fibre composite layer has been damaged. The user must ensure that no damage has been transferred to the underlying carbon fibre composite reinforcement.

This kind of damages, with prior permission, can be repaired by CTS S.p.A. or by authorized dealers. Please note that this is not always possible and Level 2 damages can be subsequently categorized as Level 1 damages (where possible and Level 2 damages).

is necessary) or Level 3 damages (where the cylinder is deemed unusable and must be discarded). The main difference between the Levels resides in the damage depth and/or width and whether or not it affected the carbon fibre.

CTS S.p.A. works constantly with the aim to improve the accuracy at which these defects are recognized, so that discarded cylinders are kept to a minimum without compromising the user safety.

Some examples of level 2 damages:

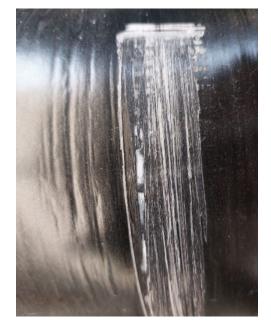
Delamination (see image below) should not be confused with trapped air inclusions, which are a result of air inclusions during the production process and develop particularly around the label. Trapped air inclusions are not problematic. Delamination is considered a level 2 defect and must be assessed according to severity. In the worst cases, it can lead to the detachment of part of the protective glass fibre layer.

Delamination

Trapped air inclusions

Level 3

Level 3 damages are to be considered so that their extent undermines the cylinder's safety, finishing with this kind of damage firmly indicates damage to the cylinder structure.


Some examples of level 3 damages on finishings:

Damages to the composite material

If the composite material underneath the exterior finishes shows any kind of damage, please proceed as following:

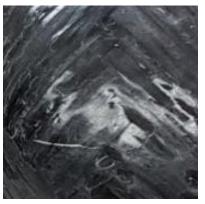
In case of scratches, the correct cylinder functionality and safety are not compromised. The epoxy resin can get scratches but this does not create any structural problem for the cylinder nor for its safety.

In case of dents, lack of material or cracks, the cylinder must be inspected by authorized personnel.

DO NOT USE THE CYLINDER. DO NOT ATTEMPT TO REFILL THE CYLINDER.

Please seek for assistance at your authorized dealer or directly at info@ctscyl.com.

Damages to the composite layer can be subdivided in: abrasion damages, impact damages, delamination, damages caused by exposure to high temperatures, chemical attack damages. According to the kind/level of damage, it is necessary to perform the appropriate actions described in the introduction.


Level 1

Low entity damages, mostly aesthetic, that have not affected the composite material. Some examples of level 1 damages on composite surface:

Level 2

This kind of damages, with prior permission, can be repaired by CTS S.p.A. or by authorized dealers. Please note that this is not always possible and Level 2 damages can be subsequently categorized as Level 1 damages (where no repair is necessary) or Level 3 damages (where the cylinder is deemed unusable and must be discarded). The main difference between the Levels resides in the damage depth and/or width and whether or not it affected the carbon fibre.

CTS S.p.A. works constantly with the aim to improve the accuracy at which these defects are recognized, so that discarded cylinders are kept to a minimum without compromising the user safety.

Some examples of level 2 damages on composite surface:

Level 3

Damages to be considered of Level 3 are damages that have reached the carbon fiber. These are structural damages; hence the cylinder must be made unusable.

Some examples of level 3 damages on composite surface:

Chemical exposure or attack

Composite materials can be attacked by chemicals and in some cases, by treated water.

If a cylinder has been exposed to chemicals or aggressive fluids, check the external composite surfaces for any visible signs of damage. Chemicals may dissolve, corrode, soften, remove or ruin cylinder materials.

They may also cause bubbling, pitting or extreme dulling of the resin, deterioration of the resin or protective layer (sacrificial envelopment or protection sleeves) or create multiple fractures to the structure.

Cylinders with evidence of such damage shall be REJECTED.

If a carbon cylinder has been damaged by chemicals, it must be REJECTED.

SET ASIDE for further inspection if the cylinders are known to have come into contact with any chemicals other than those listed below and which may have damaged the composite material. Contact C.T.S. S p.A. for further information. Any cylinder coming into prolonged contact (e.g., soaking) with these types of chemicals and materials must be REJECTED:

- Strong bases: Materials that contain medium-to-high concentrations of sodium hydroxide, potassium hydroxide (and / or others) substances containing strong soapy solutions and substances containing surfactants used in removing stubborn dirt, etc.
- Acids: Materials that are or contain any concentration of acids, including hydrochloric, sulphuric, nitric and phosphoric acids
- Corrosives: Corrosive materials or those containing corrosive components, including chemicals mentioned
 above, as well as harsh all-purpose cleaners, glass cleaners, metal cleaners, resin cleaners/removers, drain
 openers/cleaners, glues, rubber cement and other chemical cements; also, atmospheres containing
 corrosive gases
- Solvents that can make the structure or the liner swell: acetone, benzene, chlorinated solvents, mineral turpentine solvent, etc.

High-temperature exposure

When dealing with cylinders exposed to high temperatures, it is important to distinguish between the environmental temperature and the effective temperature reached inside the cylinder. Since the composite layer has thermal insulation properties, even if the cylinder is exposed to a high temperature environment, it takes time to reach the same temperature inside the cylinder. For this reason, not only temperature, but also time of exposure is to be taken in consideration.

The exposure to high temperature, even 300°C, for a brief period of time (10-15 seconds) cannot alter the external composite layer nor the chemical-physical properties of the internal liner. However, we suggest to let an authorized centre or CTS S.p.A. itself carry out a survey on the fire exposed cylinder.

Some examples of fire exposed composite cylinders:

Damages to thread/nozzle

The valve removal must be carried out by qualified personnel or authorized service centers, following the relevant instructions provided by this manual and any instructions provided by the valve manufacturer.

WARNING:

BEFORE removing the valve MAKE SURE THE CYLINDER IS COMPLETELY EMPTY.

Anyone handling a cylinder with a valve that he believes to be empty should take the same precautions that he would take if the cylinder were assumed to be pressurized / full.


Pay attention during the removal of the valve. If the valve is difficult to remove, stop immediately. It is possible that the valve is damaged or not functioning properly. CTS is not responsible for malfunctions or incorrect use of valves on CTS cylinders. In case of suspected valve malfunction, contact the manufacturer immediately.

Damages on the threads shall be evaluated to assess if these damages affect or not the cylinder safety (Level 2 and Level 3 damage according to ISO 11623), the classification distinction is explained in the introduction.

Level 1

These kinds of damages do not compromise the part functionality, although care is required because these imperfections can lead, especially on Aluminum alloy nozzles, to a loss in the corrosion resistance.

Some examples of level 1 damages on nozzles:

Level 2

Damages on the nozzle thread and/or body could be caused by an incorrect valve installation or uninstallation. In case of these kind of damages, it is possible to contact CTS S.p.A. or the authorized dealer to replace the internal nozzle following a thorough cylinder's safety inspection.

Some examples of level 2 damages on thread/nozzle:

Level 3

Damages caused by corrosion are to be considered harmful to the cylinder. Cylinders showing signs of corrosion must be decommissioned.

Some examples of level 3 damages on nozzle:

7.4.2 INTERNAL DAMAGE EVALUATION

The internal inspection should be carried out using a sufficient illumination or a video endoscope to detect any damage. The cylinder interior should be clean. If not, it can be cleaned gently using a mild soap and water, rinse abundantly with clear water. To dry the cylinder turn it upside down and wait for the water to flow out of it. It is possible to use a clean air jet (max temperature 65°C).

Type 4 cylinders are made out of an internal PET liner and of an outer shell in composite material. The internal PET liner has the only purpose of containing the gas, it has no structural property.

In fact, all the mechanical properties of the pressure vessel are given by the outer shell.

The internal PET liner can be damaged only because of an incorrect use of the cylinder, such as filling or washing it with hot water or with hot gases or with corrosive substances. The internal PET liner can be also damaged because of an extended exposure to very high temperatures or to an aggressive environment, especially when the cylinder is empty.

The internal liner, being made out of plastic material, is the most elastic material of the entire cylinder, therefore an improper use of the cylinder not specified for in the manual may create blisters. The blistering phenomenon is merely aesthetical and does not affect in any case the safety nor the correct functioning of the cylinder.

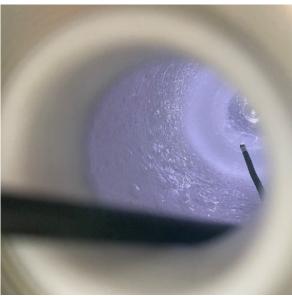
The blistering phenomenon may be of two kinds: macro and micro blistering.

Level 1 Macro Blistering

Macro blistering consists in one or more big blisters oriented towards the inside of the cylinder.

The blisters are caused by a depressurization inside of the cylinder (for example during a flight with no pressure in the cargo). This phenomenon, purely aesthetical, does not impair the correct functioning of the cylinder nor to any of its mechanical or sealing properties and, in any case, it does not affect the safety of the product.

In fact, thanks to the high level of elasticity of the plastic material, in order to restore the correct shape of the internal liner, it is sufficient to fill the cylinder with breathing air at 12-15 l/min. Usually, it is sufficient to fill the cylinder at 50 bar but, in some cases, it is necessary to fill the cylinder up to the working pressure.




Micro Blistering

Micro blistering consists in micro blisters on the liner internal side.

This type of blistering is due to the permeation phenomenon: if a cylinder is kept charged for a long time and then is completely emptied, the air molecules, that were permeating from the inside of the cylinder to the outside through the plastic material, experience a molecular expansion creating the micro blisters on the internal surface of the plastic liner. This phenomenon, purely aesthetical, does not cause any problem to the correct functioning of the cylinder nor to any of its mechanical or sealing properties and, in any case, it does not affect the safety of the product.

CTS S.p.A. states once again that both macro and micro blistering are merely aesthetical phenomena that, in any case, do not affect or compromise the safety, the sealing and the correct functioning of the cylinders. The internal plastic liner has the only purpose of being gas-proof. All the mechanical properties of the cylinder are demanded to the outer composite shell.

M0014 – Carbon Dioxide - ENG Rev 04 – 13/05/2025

26

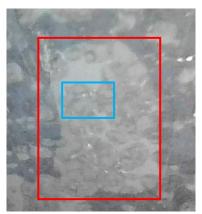
Blemishes

To facilitate internal inspection, the inner liner has a white cover, which covers the black background of the carbon. It is possible for this cover to become damaged over time, due to the movement of the liner during air charging and discharging.

This defect should only be regarded as cosmetic, as it does not affect the functionality of the cylinder.

Below are examples of a ruined white liner, revealing the carbon underneath:

Small imperfections may already be present in the white liner cover. These do not constitute a problem and should be regarded as imperfections rather than defects, as they are only for internal inspection and do not affect the function of the cylinder.



It is also possible to detect another type of defect in the white cover, which can be mistaken for blistering. This is actually air bubbles between the white cover and the liner, not an air blister within the PET layers.

It is important to note that this defect should not be confused with imperfections resulting from the production process, as illustrated above.

In red: white air bubble between white cover and liner
In blue: blistering

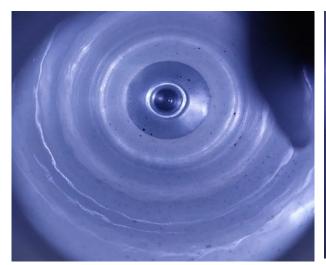
Level 2

Level 2 liner damage usually consists in one bulge towards the inside of the cylinder. It differs from the macro blistering by the fact that the bulge is not a blister, but a deformation of the liner itself.

These kinds of damages occur after the cylinder is subjected to a negative pressure (vacuum), please note that also an excessively fast cylinder emptying rate can cause local vacuum with subsequent liner damage.

This type of damage can be repaired by CTS S.p.A. or by authorized dealers.

Generally, this doesn't create issues to the cylinder, after filling it to 5 - 10 bar the PET liner reacquires its original shape. The intervention of CTS S.p.A. is necessary to assess if the liner has been damaged, performing hydrostatic and air leakage tests.


Contamination

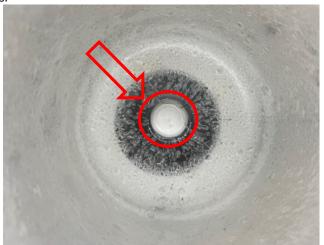
The contamination of the liner falls into level 2 or 3, as it is not acceptable the presence of foreign matter or substances inside the cylinder.

Depending on the substance (and how it affects the material of the liner) and the severity of the contamination, the liner can be cleaned by CTS S.p.A. or be rejected, resulting in the decommissioning of the cylinder.

NOTE: Type IV cylinders need more precautions than cylinders with metal liners when cleaning. In fact, the internal liner cannot be exposed to a direct temperature higher than 65°C. The use of jets of hot water or hot air is strongly forbidden. Anyway, we suggest to let an authorized centre or CTS S.p.A. itself carry out a survey on the contaminated liner.

Examples of contamination:





Level 3

The internal PET liner can be damaged after an incorrect use of the cylinder, i.e., filling or washing the internal surface with hot water, hot gases or with corrosive substances. The internal PET liner can be also damaged after a long exposure to very high temperature or to an aggressive environment, mainly when the cylinder is empty. This incorrect use leads to a leaking cylinder that cannot be used anymore.

Crystallization of the PET liner, result of a prolonged or internal exposure to high temperature, cracks on the liner or the collapse of the liner itself are most common level 3 damages.

7.5 RMA PROCEDURE

CTS S.p.A. established a return merchandise authorization (RMA) procedure.

This procedure is issued once CTS S.p.A. receives a copy of the RMA form duly filled and signed. It is compulsory to send the filled in and signed form before sending the cylinders to CTS S.p.A.

Filling out and sending the RMA form via email are essential actions in order to be authorized for the delivery of the cylinders to CTS S.p.A. so that they can be repaired, substituted or analysed. This is applicable whether the cylinders are still inside the warranty period or not.

It is possible to fill out the RMA form from CTS S.p.A. website <u>www.ctscyl.com</u> or request it via email at <u>info@ctscyl.com</u>.

Cylinders sent without a filled and signed RMA will be rejected by CTS S.p.A.

8. STORAGE

Store the cylinder with the valve at room temperature in a dry place, away from chemical products, heat sources, and corrosive environments. The cylinder must be secured in a vertical or horizontal position to prevent rolling, swaying or tipping. Particular attention must be paid to the proper protection of the valve to avoid damage.

To prevent external contamination and/or damage to the inner plastic liner, all Type IV bottles should not be stored without any pressure.

9. SHIPMENTS

The type 4 cylinders should always have a minimum internal pressure of 2 bar of inert gas. This is required for keeping the cleanliness and internal hygiene of the cylinder.

The Standards or Codes that classify the goods as dangerous or not dangerous, and that regulate their transport, are: ADR for land transport, ADN and IMDG for ship transport, RID for railway transport and IATA for air transport. The ADR, ADN, IMDG and RID regulations allow the carrying of pressurized nitrogen cylinders (and other gases that are part of the same group) with an internal pressure of maximum 2 bar without that transport being classified as dangerous and therefore transportable without special care.

The *IATA* regulation states that the air transport of compressed gases is always to be considered, and must always be handled, as a dangerous material transport, even if the cylinders are stored at a pressure of only 2 bar. It is for this reason that CTS S.p.A. recommends its customers to follow the instructions given below, so that the cylinders are not to be shipped as dangerous goods, but at the same time use the cylinders in the best possible way.

Table 2. Method of transport allowed by the regulations

	Type of transport				
Method	Trucking	Trucking	Trucking	Trucking	
Figure 4	X	Χ	X	-	
Figure 5	X	Χ	X	-	
Figure 6	-	-	-	X	
Figure 7	-	-	-	X	

Fig.4: Cylinder without valve and internal pressure of 2 bar

Fig.5: Cylinder with valve and internal pressure of 2 bar

Fig.6: Cylinder with cap and without internal pressure

Fig.7: Cylinder with open valve and anti-tampering tape

CTS S.p.A. recommends, where allowed, to always keep an internal pressure of 2 bar.

In the case where transport in pressure would not be allowed (e.g. air transport), it is recommended to carry out the following operation in the first three/four hours after receiving the cylinder:

- 1. Fill the cylinder with at least 50 bar of approved carbon dioxide
- 2. Empty the cylinder with an emptying speed lower than 260 litre per minute
- Fill the cylinder with carbon dioxide to store it, otherwise load it at working pressure to have the cylinder ready for use.

10. SCRAPPING AND DISPOSAL

Cylinders that may be dangerous or which identity label cannot be easily read must be immediately REJECTED. To SCRAP SAFELY a cylinder and make it UNUSABLE, drill a hole through the cylinder structural wrapping and liner.

Proceed as follows:

- Ensure the proper functioning of the valve
- Make sure that the cylinder is COMPLETELY EMPTY
- Remove the valve only if it proves necessary to the operations of disposal of waste by type, otherwise leave it
 installed
- Lock the cylinder body on a suitable locking device (workbench with bench-vice), wear personal protective equipment suitable for drilling such as gloves, goggles, safety shoes, etc.
- Drill a small diameter hole (e.g. 6 mm) on the cylindrical part of the cylinder
- Properly dispose according to the applicable regulation

CTS cylinders are made of: carbon fibres and/or glass fibres and/or aramid fibres, aluminium and/or steel, rubber and/or polyester. They can be recycled. DO NOT DISPOSE INTO THE NATURAL ENVIRONMENT.

11. USE AND MAINTENANCE SUMMARY

DO'S:

- Do keep the threads and cylinder interior dry and clean
- Do fill the cylinders only with approved gas
- Do always comply with the testing terms
- Do inspect cylinders exposed to fire or high temperature environment for prolonged time
- Do follow both valve manufacturer's and CTS' installation and disassembly procedures
- **Do** always discharge slowly the cylinder to limit the onset of blistering and to maintain the plastic liner healthy
- **Do** use clear water to perform hydrostatic tests
- Do load the cylinder with the correct amount of CO₂

DON'TS:

- Don't discharge the cylinder until it reaches 0 bar or less
- Don't fill the cylinder if there is water inside
- Don't store the cylinder without pressure, to keep the internal liner healthy
- **Don't** use a filled cylinder in unventilated rooms to avoid inhaling CO₂.
- Don't fill the cylinder at too high a rate to avoid thermal shock
- Don't directly expose the inner liner to temperatures above 65°C
- Don't clean the interior of the cylinder by rolling inside chips, balls or other solid materials mixed with water.
- Don't use chemicals that are not compatible with PET to clean the inside of the cylinder
- **Don't** tamper with the surface protections (end caps, protective sheathings, painting, changing the labels identifying the manufacturer)
- Don't use a cylinder that has been exposed to flames and has not been retested
- Don't use a cylinder that has been attacked by chemicals.